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The Use of Dark Matter Modulation to Constrain WIMP 
Mass and Infer Substructure in its Distribution 
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University of Nottingham 

Weakly Interacting Massive Particles (WIMPs) can be detected directly through 
their elastic scattering off of nuclei. However, such experiments are subject to 
significant levels of background noise due to local radiation sources. Due to the 
Earth’s orbit around the Sun the rate at which dark matter is detected is 
expected to oscillate with a period of one year. The primary background sources 
however are not expected to exhibit any such modulation. In this paper, using 
estimates of the distribution of dark matter we investigate how this modulation 
can be used to constrain the value for the WIMP mass. It is found that the 
amplitude of this modulation varies with WIMP speed and hence recoil energy. 
As such there exists a critical energy at which the amplitude is zero. This energy 
is dependent on the detector particle used. This critical energy can be used to 
set limits on the WIMP mass. We also find that discrepancies between the total 
number of detected collision events to that which is predicted theoretically can 
be used to infer the presence of substructure within the dark matter halo.  
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I. Introduction 
The existence of dark matter has been inferred through various astronomical observations since the early 
1900’s. Astronomers such as Jan Oort and Fritz Zwicky used the idea of dark matter to explain the 
observed motion of stars and galaxies respectively [1, 2]. They noted that the combined masses of the 
visible objects within the respective systems was not sufficient to keep objects with such high velocities 
from escaping. Later, strong evidence for the existence of dark matter came from the rotation curves of 
spiral galaxies [3].  

Unlike ordinary matter, dark matter is not thought to interact though electromagnetism. As a 
consequence the relative abundance of dark matter influences the anisotropies observed within the 
microwave background radiation. Microwave space telescopes such as the Planck telescope have been 
used to measure these anisotropies and thus, determine the energy density of the universe that must 
come from dark matter. It has hence been determined that dark matter outweighs ordinary, baryonic 
dark matter by a factor of about five to one [4]. 

Further evidence for the presence of dark matter comes from gravitational lensing. Due to general 
relativity, gravity from massive objects such as galaxies has the ability to bend the path of light. As such 
the images of background objects can be distorted in a process known as gravitational lensing. This 
distortion can be used not only to determine the mass within a region of space but also to determine its 
distribution and therefor map the distribution of dark matter [5]. 

Since dark matter only weakly interacts with ordinary matter, we do not currently know what dark matter 
is composed of. The most prominent candidate to date, and the focus of this paper, is the weakly 
interacting massive particle (WIMP). These particles are expected to have masses in the range of around 
10 to 1000 times the mass of a proton. As suggested by their name they only interact weakly with ordinary 
matter as well as being electrically neutral [6]. They are also predicted to be their own anti-particle, 
annihilating each other since the early universe leading to the density observed today.  

There are a number of ways in which WIMPs can be studied. These include producing them in particle 
colliders such as the Large Hadron Collider [7] and through observing the products of their annihilation in 
the form of high energy gamma rays or anti-matter [8]. The focus of this paper however, is the method 
of direct detection through the elastic scattering of WIMPs off nuclei. When WIMPs collide with nuclei 
they transfer some of their kinetic energy. This energy is then detected in the form of heat, ionization and 
light [9]. However, radiation emitted from the Sun and sources local to the detector impose a large 
amount of background noise on these experiments. Some of this background is avoided by building 
detectors underground. Many collaborations are trying to detect these particles using detectors 
composed of materials such as xenon [10], germanium [11] and multi-element crystals such as sodium 
iodide [12]. 
 
As the Earth travels through the galaxy it also moves through the galactic dark matter halo. This dark 
matter almost entirely passes through the Earth without interacting with any of the Earths matter. 
However, there is a small chance for an interaction to occur and hence a chance for the dark matter to 
be detected. Due to the orbit of the Earth around the Sun the rate at which these particles are detected 
is expected to modulate throughout the year.  

In June the Earth’s velocity is roughly parallel to that of the Sun, such that the speed at which we travel 
through the dark matter halo is at a maximum. We would therefore expect the rate of detection to be 
highest at this time. Conversely, the direction of Earth’s travel in December is roughly anti-parallel to that 
of the Sun, at this point detection is expected to be at its lowest [13]. This type of modulation is not 
expected to be seen for most of the primary background sources. Therefore, detecting this modulation is 
a ‘smoking gun’ for the presence of dark matter.  

The specific behaviour of the modulation with respect to the recoil energy of collisions is dependent on 
the distribution of the WIMPs, as well as their physical properties. In this paper we investigate how the 
modulation of dark matter can therefore be used to constrain the WIMP mass and infer properties about 
the distribution of dark matter within the galaxy.  
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II. Theory 

A. Detection 

In a direct detection experiment a WIMP of mass ܯ஧ collides with a detector nucleus of mass ܯ, 
transferring momentum ݍ. The target nucleus recoils with kinetic energy ܧ୬୰. Assuming the collision is 
perfectly elastic, this relates to a minimum WIMP speed relative to the nucleus given by  

୫୧୬ݒ = ඨ
୬୰ܧܯ

ଶߤ2  ,                                                                                      (1) 

where ߤ ≡ ஧ܯ ܯ ൫ܯ஧ + ⁄൯ܯ  is the reduced mass of the WIMP-nucleus system. Then assuming that the 
collisions are elastic the differential rate of collision events per unit of detector mass is given by 

dܴ
dܧ୬୰

=
1

ଶߤ஧ܯ2 ,(୬୰ܧ)୫୧୬ݒ)ߟ஧ߩ(ݍ)ߪ  (2)                                                           , (ݐ

where (ݍ)ߪ is the effective scattering cross-section, ߩ஧ is the local dark matter density and 
,(୬୰ܧ)୫୧୬ݒ)ߟ  is the mean inverse speed [13]. This is given by the inverse velocity integral over the dark (ݐ
matter distribution ݂(ݒ,  (ݐ

,(୬୰ܧ)୫୧୬ݒ)ߟ (ݐ = න ݀ଷݒ
 

௩வ௩ౣ౟౤

,ݒ)݂ (ݐ

ݒ
 .                                                            (3) 

This mean inverse speed changes over a period of one year and is the term in equation 2 which drives the 
modulation in detection rate.  

The variation of the differential detection rate over a year is shown primarily by the amplitude of the 
modulation. Since it is known that the detection rate peaks and troughs in June and December 
respectively, the amplitude is given by the equation 

ோ/ୢாୢܣ ≈
1
2

൤
dܴ

dܧ୬୰
(June 1) −

dܴ
dܧ୬୰

(Dec 1)൨ .                                                         (4) 

B. Distribution 

1. Simplified SHM 

The dark matter halo through which the Earth passes is likely to be smooth in nature. Through 
dynamical observations of the Milky Way the local dark matter density has been found to be 
roughly 0.4 GeV cm−3 [14]. The standard halo model (SHM) is often taken to be the simplest; a 
viralised isothermal sphere with an isotropic Maxwellian velocity distribution. This distribution 
is given by  

(ݒ)݂ = ቆ
1

଴ݒߨ
ଶቇ

ଷ ଶ⁄

݁ି௩మ ௩బ
మൗ  ,                                                                    (5) 

where  ݒ଴  is the most probable speed with a value approximately equal to the speed of the Sun 
through the galaxy. This speed is related to the velocity dispersion ߪ௩ through the equation 

଴ݒ = ට2
3ൗ  ௩ .                                                                                 (6)ߪ

Since the Earth orbits the Sun the observed distribution changes throughout the year. We can 
account for this by rewriting the distribution as   

,ݒ)݂ (ݐ = ሚ݂(ݒ୭ୠୱ(ݐ) +  (7)                                                                     . (ݒ
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Figure 1 - Velocity distribution modulation predicted for 
June 1st and December 1st using the standard halo model.

Here the velocity ݒ୭ୠୱ(ݐ) is the velocity of the detector relative to the dark matter rest frame. 
Hence, it is a combination of the motion of the Sun relative to the dark matter rest frame ݒୗ୳୬ 
and the velocity of the Earth relative to the Sun ݒ୉ୟ୰୲୦(ݐ) 

(ݐ)୭ୠୱݒ = ୗ୳୬ݒ +  (8)                                                                  . (ݐ)୉ୟ୰୲୦ݒ

If the dark matter is smooth and non-rotating then ݒୗ୳୬ is simply a combination of the velocity 
of the local stellar neighbourhood in galactic coordinates ݒ୪୭ୡ = (0, ,୰୭୲ݒ 0) and the Sun’s peculiar 
velocity ݒ୮ୣୡ = (11.1, 12.2, 7.3) [15]. The Sun’s orbital speed through the galaxy is observed to be 
୰୭୲ݒ = 218 km sିଵ [16].  

Then, assuming a perfectly circular orbit, the velocity of the Earth relative to the Sun is given by  

(ݐ)୉ୟ୰୲୦ݒ = ݐ)ଵcos߱ߝ୉ୟ୰୲୦ሾ̂ݒ − (ଵݐ + ݐ)ଶsin߱ߝ̂ −  ଵ)ሿ ,                                 (9)ݐ

where ߱ = 2 ߨ yr⁄  and the speed of Earth’s rotation ݒ୉ୟ୰୲୦ = 29.8 km sିଵ. The unit vectors ̂ߝଵ and 
 ଶ give the directions of the Earth’s motion at the spring equinox and summer solsticeߝ̂
respectively. In galactic coordinates ̂ߝଵ = (0.9931,0.1170, −0.01032) and ̂ߝଶ =
(−0.0670, .04927, −0.8676) [17]. 

Since ݒୗ୳୬ ≫  ୉ୟ୰୲୦ the equation for the magnitude ofݒ
 can be simplified by making the approximation (ݐ)୭ୠୱݒ

(ݐ)୭ୠୱݒ ≈ ୗ୳୬ݒ + ݐ)୉ୟ୰୲୦cos߱ݒܾ −  ଴) ,             (10)ݐ

where ݐ଴ is the time at which the ݒ୭ୠୱ ≈ ୗ୳୬ݒ +  ୉ୟ୰୲୦ andݒܾ
ܾ ≡ ඥܾଵ

ଶ + ܾଶ
ଶ is a geometrical factor for ܾ௜ ≡ ௜ߝ̂ ∙  .ୗ୳୬ݒ̂

Performing the calculations we find that ܾ = 0.4896. 

Applying this to the modified dark matter distribution given 
by equation 5, the time varying nature of the distribution is 
realised as demonstrated in figure 1. As such the mean 
inverse speed, the quantity relating to the detection rate, 
also changes with time.  

For this, simple Maxwellian distribution, the mean inverse 
speed has a simple analytical equation given by 

,୫୧୬ݒ)ߟ (ݐ =
1

୭ୠୱݒ2
ሾerf(ݔ + (ݕ − erf(ݔ −  ሿ ,                                          (11)(ݕ

where ݔ ≡ ୫୧୬ݒ ⁄଴ݒ  and ݕ ≡ ୭ୠୱݒ ⁄଴ݒ  [17].  This equation describes how the detection rate varies 
in time and, in part, how it depends on the recoil energy of the collision. As the mean inverse 
speed always peaks in June and December we can define the amplitude of the modulation of 
the mean inverse speed to be 

ఎܣ =  
1
2

ሾݒ)ߟ୫୧୬, June 1) − ,୫୧୬ݒ)ߟ Dec 1)ሿ .                                              (12) 

2. Improved SHM 

The simplified model as discussed so far neglects the fact that dark matter with a speed above 
some escape velocity ୣݒୱୡ will leave the galactic system and therefore not be detected. Through 
the study of the motion of high velocity stars, the escape velocity is found to be about 
544 km sିଵ [18]. This can be factored into the model simply by imposing that ሚ݂(ݒ > (ୱୡୣݒ = 0. 
This however, produces a sharp discontinuity in the distribution at the escape velocity which is 
not characteristic of what we would expect to see.  This transition in the distribution near the 
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escape velocity can be improved by including an additional exponential term. The new 
distribution for the case in which |ݒ| <  ୱୡ is given byୣݒ

(ݒ)݂ = ቆ
1

଴ݒߨ
ଶቇ

ଷ ଶ⁄

ሾexp(−ݒଶ ଴ݒ
ଶ⁄ ) − exp(−ୣݒୱୡ

ଶ ଴ݒ
ଶ⁄ )ሿ .                                                   (13) 

The mean inverse speed for this distribution also has an analytical form given by 

where ݔ and ݕ are defined as before with ݖ ≡ ௘௦௖ݒ ⁄଴ݒ  and where 

ୣܰୱୡ = erf(ݖ) −
2

ߨ√
ݖ ൬1 +

2
3

ଶ൰ݖ ݁ି௭మ
 ,                                                          (15) 

is a normalization factor [17]. As we will see later, these corrections make little contribution to 
modulation of the detection rate.  

3. Dark Matter Stream 

For a complete investigation into the modulation of dark matter the possible contribution of 
substructure within the dark matter halo must also be considered. Substructures such as debris 
flows and streams are unviralised and have the potential to significantly impact the observed 
modulation in dark matter detection. It is known that our galaxy is currently pulling a stream of 
material off of a smaller galaxy, Sagittarius. This is known as the Sagittarius stream [17]. It is 
logical to assume the matter within this stream includes dark matter. Astronomical 
investigations have found that this stream passes within a few kpc of our local stellar group [19]. 
This paper will therefore consider the possible effect of tidal streams.  
 
Since the particles of which the stream is composed have not had sufficient time to interact with 
each other the velocity dispersion is small to negligible. If the stream is completely coherent 
௩ߪ) = 0) the velocity distribution is given by  

ሚ݂
ୱ୲୰(ݒ) =  (16)                                                                        , (ݒ)ଷߜ

where ߜଷ(ݒ) is the three dimensional Dirac delta function [17]. Naturally, this is not a very 
physical approximation as any stream will most likely have some level of velocity dispersion, but 
it serves as a good approximation for investigating the broader impacts of the stream.  

The mean inverse speed of this simplified stream distribution is given by a Heaviside function 

(୫୧୬ݒ)ߟ =
1

୭ୠୱݒ
ᇱ ୭ୠୱݒ)ߠ

ᇱ −  ୫୧୬) .                                                         (17)ݒ

Here, the modified observed velocity is given by ݒ୭ୠୱ
ᇱ = ୭ୠୱݒ  −  ୱ୲୰ is the speed of theݒ ୱ୲୰ whereݒ 

stream relative to the detector [17]. In the simplified case in which ݒୱ୲୰ = 0 the observed velocity 
is equal to that given by equation 10, that is, ୭ୠୱݒ

ᇱ =  .୭ୠୱݒ 

The total differential detection rate is simply given by the sum of the detection rates calculated 
for the SHM and the stream using equation 2 

൬
dܴ

dܧ୬୰
൰

୘୭୲ୟ୪

= ൬
dܴ

dܧ୬୰
൰

ୗୌ୑

+ ൬
dܴ

dܧ୬୰
൰

ୗ୲୰ୣୟ୫

                                             (18) 

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ

1
୭ୠୱݒ

,                                                                                                                                                             for ݖ < ,ݕ ݔ < ݕ| − |ݖ

1
2 ୣܰୱୡݒ୭ୠୱ

൤erf(ݔ + (ݕ − erf(ݔ − (ݕ −
4

ߨ√
൬1 − ଶݔ −

1
3

ଶݕ − ଶ൰ݖ ௭మି݁ݕ
൨ ,                                      for ݖ > ,ݕ ݔ < ݕ| −      |ݖ

1
2 ୣܰୱୡݒ୭ୠୱ

൤erf(ݖ) − erf(ݔ − (ݕ −
2

ߨ√
൬ݕ + ݖ − ݔ −

1
3

ݕ) − ݖ2 − ݕ)(ݔ + ݖ − ଶ൰(ݔ ݁ି௭మ
൨ ,          for|ݕ − |ݖ < ݔ < ݕ +    ݖ

0,                                                                                                                                                                 for ݕ + ݖ <              ݔ

(୫୧୬ݒ)ߟ (14)   = 
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C. Cross Section 

For direct detection experiments the rate of detection is proportional to momentum dependent 
WIMP-nucleus scattering cross section. When the WIMP momentum is small it scatters off the 
entire nucleus. However, as the momentum increases the de Broglie wavelength of the WIMP 
reduces in size causing the effective cross section to decrease [17]. This is encoded into the cross 
section by the form factor ܨଶ(ݍ) through the equation  

(ݍ)ߪ =  (19)                                                                    , (ݍ)ଶܨ଴ߪ

where ߪ଴ is the scattering cross section in the limit in which momentum transfer is zero. When 
the momentum transfer, ݍ = 0 the form factor (ݍ)2ܨ = 1 [13]. For higher momentum transfers 
however (ݍ)2ܨ ≪ 1.  

The total cross section is the sum of spin independent and spin dependent cross section  

଴ߪ = ୗ୍ߪ +  ୗୈ .                                                                       (20)ߪ

The first order spin independent term is given by  

ୗ୍ߪ =
4
ߨ

ଶൣܼߤ ୮݂ + ܣ) − ܼ) ୬݂൧
ଶ

 ,                                                       (21) 

where the effective coupling of the WIMP to the proton and neutron is parameterized by ௣݂ and 
୬݂ respectively, with the number of protons and neutrons respectively given by ܼ and (ܣ − ܼ) 

[20]. For most WIMP candidates the effective nucleon couplings are expected to be roughly 
equal ( ௣݂ ≈ ௡݂). This allows the spin independent cross section to be approximated to  

ୗ୍ߪ =
ଶߤ

୮ߤ
ଶ  ୮,ୗ୍ ,                                                                  (22)ߪଶܣ

where ߤ୮ is the reduced mass of the WIMP-proton system and ߪ୮,ୗ୍ is the spin independent cross 
section for WIMP-proton scattering [20].  

For heavy detector nuclei ߤଶ ୮ߤ
ଶൗ ≈  ଶ. Therefore, the spin independent cross section effectivelyܣ

scales as 4ܣ. The same is not true for spin dependent interactions. This is one of the reasons why 
the spin independent term often dominates over the spin dependent term [17]. As such, to help 
simplify the model the WIMP-nucleus cross section is assumed to be purely spin independent. 
This assumption is particularly valid for heavy nuclei such as xenon which is the primary focus 
of this paper. 

The WIMP-nucleon scattering cross section is significantly smaller than the geometrical cross 
section. Consequently, the specific value of this cross section has yet to be found. Instead, 
experiments such as those conducted by the XENON100 group provide an extensive ‘exclusion 
zone’ shown in figure 2, in which the WIMP-nucleon cross section cannot exist. To proceed with 
the investigation we must choose a value for this cross section. The specific value is not of great 
importance as it only acts to linearly scale the detection rate and plays no roll in its overall 
modulation. Therefore, based on the 2012 XENON100 results of figure 2 a value of ߪ୮,ୗ୍ = 2 ×

10ିସହ cmଶ will be used [21].  
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There are a number of approximations for the atomic form factor. For spin independent 
interactions one of the equations most commonly used in the Helm form factor given by  

(ݍ)ܨ = 3݁ି௤మ௦మ ଶ⁄ sin(ݎݍ୬) − (୬ݎݍ)୬cosݎݍ
ଷ(୬ݎݍ)  ,                                              (23) 

where constants ܽ and ݏ are approximately equal to 0.52 fm and 0.9 fm respectively with ܿ ≈

ܣ1.23
భ
య − 0.60 fm and effective nuclear radius given by 

୬ݎ
ଶ = ܿଶ +

7
3

ଶܽଶߨ −  ଶ .                                                                (24)ݏ5

The Helm form factor was introduced to account for the soft edge of the nucleus by multiplying 
the form factor for a uniform sphere by a Gaussian [22]. While it is sufficient for this 
investigation, it is important to note that this equation is an approximation of the true form 
factor and neglects the effect of nuclear structure. The consequences of this structure are 
explored for WIMP scattering off xenon by L. Vietze et al. 2015 [23].   

III. Results 

A. Simplified SHM 

1. Mean Inverse Speed 

The mean inverse speed controls the frequency at which the detection rate is modulated. It is 
therefore important to understand its dynamics. The time varying mean inverse speed was 
investigated by plotting ߟ(ݒ୫୧୬) as given by equation 11, using the detector speed given by 
equation 10. This was done for 3 different minimum detectable speeds; 0 km sିଵ, 200 km sିଵ, 
and 400 km sିଵ. This is shown in figure 3 below. 

 
Figure 2 – Spin-independent WIMP-nucleon scattering results from 
XENON100. The green and yellow bands show the expected 1σ and 2σ 
sensitivities of the experiment respectively. The consequential 
exclusion limit is shown in blue. For comparison, other experimental 
limits and detection claims are also presented. Figure modified from 
E. Aprile et al. 2013. 
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Figure 3 - Mean inverse speed ߟ(ݒ୫୧୬) as a function of time for 3 
different minimum detectable speeds; 0 km sିଵ, 200 km sିଵ, and 
400 km sିଵ calculated by modelling velocity distribution of dark matter 
as a simple Maxwellian distribution. 

From figure 3 it can be seen that the sign of the amplitude changes between a ݒ୫୧୬ =
0 km sିଵ and ݒ୫୧୬ = 200 km sିଵ. From this we can infer that there exists some WIMP speed 
between these two speeds at which the amplitude is zero. This speed relates to a recoil energy 
through equation 1.  

As the mean inverse speed is also dependent on the minimum detectable WIMP speed. It is 
therefore also important to understand the characteristics of this relationship for some point in 
time. This was investigated further using equation 11 for the mean inverse speed and equation 
10 for the detector speed but this time varying the minimum detectable speed ݒ୫୧୬. The result 
is shown in figure 4 below. 

 
Figure 4 – Mean inverse speed ߟ(ݒ୫୧୬) as a function of minimum 
detectable WIMP velocity ݒ୫୧୬ for the first of June and December, 
calculated be modelling velocity distribution of dark matter as a simple 
Maxwellian distribution. 

The point at which the amplitude of modulation changes sign can clearly be seen on figure 4 as 
the point at which the mean inverse speed on the first of June and December is equal. This graph 
does not however illustrate the dependence on WIMP mass. This dependence arises from the 
relationship between the minimum detectable WIMP speed ݒ୫୧୬  and the nuclear recoil energy 
 ୬୰ as given by equation 1. This is because in direct detection experiments the recoil energy isܧ
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measured through the resultant rise in detector temperature rather than directly measuring the 
WIMP speed.  

The dependence on recoil energy can be illustrated by calculating the amplitude of the 
modulation of mean inverse speed ܣఎ  given by equation 10 as a function of the nuclear recoil 
energy ܧ୬୰ for different WIMP masses ܯ஧. This was calculated for the case of a xenon based 
detector with an atomic mass of 131.3u as shown in figure 5 below 

 
Figure 5 – Amplitude of Mean Inverse Speed Modulation ܣఎ as a 
function of recoil energy ܧ୬୰ for a xenon based detector predicted for 
WIMP masses 30, 50 and 70 GeV calculated by modelling velocity 
distribution of dark matter as a simple Maxwellian distribution. 

From figure 5 it can be seen that the recoil energy for which the amplitude is zero, which we will 
call the critical energy, varies with the WIMP mass. For the cases displayed in figure 5 we see 
that a larger WIMP mass relates to a greater critical energy. This is central to being able to 
constrain the WIMP mass through direct detection experiments.  

2. Differential Detection Rate 

Once the mean inverse speed is calculated, the differential detection rate can be found using 
equation 2. This is shown for the example of a WIMP with a mass of 70 GeV detected by a xenon 
based detector in figure 6 below. For the purpose of comparison, we focused on this example 
throughout the investigation.   

 
Figure 6 – Differential detection rate ܴ݀ ⁄୬୰ܧ݀  as a function of nuclear 
recoil energy ܧ୬୰ for a WIMP mass of 70 GeV detected by a xenon 
based detector in June calculated by modelling velocity distribution of 
dark matter as a simple Maxwellian distribution. 



10 
 

Figure 6 shows that higher recoil energies are detected at a significantly lower rate than smaller 
recoil energies. The relationship is roughly that of an inverse exponential. The primary source 
of error in these values, neglecting those due to the cross section estimate, is the uncertainty in 
the local dark matter density ߩχ. This however, we will see, does not factor into the predicted 
constraints on the WIMP mass. 

Using this graph we can estimate of the total number of detection events we would expect to 
see in a given time period assuming the WIMP mass is 70 GeV. This is done by integrating the 
curve with respect to recoil energy. Performing this integral numerically the number of counts 
is found to be 2.68 × 10−8s−1kg−1.  

This value can then be compared to experimental results by multiplying it by the exposure of 
the experiment. During the 2013 LUX experiments 370 kg of liquid xenon is used as a detector 
with an exposure of 1.4 × 10ସ kg days. Given this exposure, using the detection rate predicted 
in figure 6 and assuming a WIMP mass of 70 GeV, we would predict a total of 33 േ 2 counts over 
the course of the experiment. This is consistent with the number the LUX group observed [24].   

Once the direct detection rate is calculated the amplitude of detection rate modulation can be 
calculated using equation 4. This was calculated for 3 different WIMP masses as shown in figure 
7. 

 
Figure 7 – Amplitude of detection rate modulation ୢܣோ/ୢா  as a 
function of recoil energy ܧ୬୰ for a xenon based detector predicted for 
WIMP masses 30, 50 and 70 GeV calculated by modelling velocity 
distribution of dark matter as a simple Maxwellian distribution. 

Figure 7 shares similar characteristics to figure 5, this is expected due to the dependence of the 
detection rates on the mean inverse speed. Most importantly, the roots of the curves of 
corresponding WIMP masses are the same for both figures. This illustrates that the critical 
energy for some WIMP mass is determined entirely by the mean inverse speed function. We 
also see that the curve peaks in amplitude for higher WIMP masses are supressed compared to 
those of figure 5, and the curves also much less broad. This is due to the atomic form factor, 
given by equation 23, which is smaller for both larger WIMP masses and higher recoil energies.  
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3. Critical Energy 

Once the differential detection rate as a function of WIMP mass and recoil energy is known, it 
is possible to then numerically calculate the critical energy ܧୡ as a function of WIMP mass. This 
was calculated using a basic root searching algorithm, the result of which is shown in figure 8 
for the case of a xenon detector with a focus on the low mass range shown in figure 9.   

 

We can be see from figures 8 and 9 that the recoil energy for which the amplitude of detection 
modulation is zero is higher for larger WIMP masses. The exact form of these graphs is 
dependent on the detector particle being used.  

Graphs such as these make it is possible to constrain the mass of the WIMP particles through 
direct detection experiments. If, for example, a direct detection experiment which detects 
nuclear recoils above some threshold energy ܧ୲୦ observes an annular peak in June then the 
critical energy must be lower than the threshold energy. This means that the WIMP mass must 
also be lower that the mass ܧ୲୦ relates to through the critical energy curve.  

From figure 8 we see that the error in these constraints becomes significant for higher WIMP 
masses (ܯఞ ≳ 400 GeV). As the critical energy only depends on the mean inverse speed the only 
errors in this prediction, assuming the model is accurate, are due to uncertainty in the speed of 
the Earth and Sun. The uncertainty in the value for the speed at which the Sun travels through 
the galaxy is significantly larger than that of the speed of the Earth around the Sun. The latter is 
therefore assumed to be comparatively negligible. Naturally, the error in the critical energy 
curve can be therefore be reduced by improving the precision in the value for the Sun’s orbital 
velocity.   

This method of finding the critical energy function can easily be extended to other detector 
types. Two of the other most important detector types are germanium, used by the CoGeNT 
and CDMS teams, and sodium iodide used by the DAMA team [11, 15, 12]. The most interesting 
differences in these detectors are seen in the WIMP mass region below 100 GeV as shown in 
figure 10. 

 
Figure 8 - Critical energy ܧୡ as a function of WIMP mass ܯ஧ 
for a xenon based detector. Calculated using a simplified 
SHM distribution for WIMP masses in the range of 0 to 
800 GeV. 

 
Figure 9 - Critical energy ܧୡ as a function of mass ܯ஧ for a 
xenon based detector. Calculated using a simplified SHM 
distribution for WIMP masses in the range of 0 to 45 GeV. 
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Figure 10 – Comparison of critical energy as a function of WIMP mass 
for a xenon, germanium and sodium iodide based detectors. 
Calculated using a simplified SHM distribution for WIMP masses in the 
range of 0 to 140 GeV 

It can be seen that while the curves for each detector type are comparable they do have some 
distinct differences. This means that different detectors are better suited to measuring WIMPs 
of different masses. For example, if the mass of the WIMP particle is of a few tens of times larger 
than that of a proton then the critical energy will be highest for a germanium based detector. 

B. Improved SHM 

The model considered so far can be made more physical by considering the implications of the 
escape velocity of dark matter. An analytical function can then be derived for the mean inverse 
speed (See section II.B.3) 

1. Differential Detection Rate 

The differential detection rate can be calculated as a function of recoil energy as done for the 
simplified model (See section III.A.2). The results of the two different models are compared in 
figure 10, along with the relative error that arises as a result of neglecting the escape velocity of 
dark matter.  

 
Figure 11 – Blue: Comparison of the predicted differential detection 
rate in June as a function of nuclear recoil for SHM distributions that 
omit and include the escape velocity of dark matter. Rate calculated 
energy for a WIMP mass of 70 GeV detected by a xenon based 
detector. Red: Relative error arising from not considering the escape 
velocity of dark matter. 
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It can be seen from figure 10 that the detection rate predicted by the two different models is 
very similar. The differences are highlighted by the relative error which becomes significant at 
high recoil energies. However, since the detection rate at these high energies is so low the 
absolute error on the predicted rate is still very small. The strong similarity between the two 
curves highlights the validity of the infinite escape speed approximation.  

Using the differential detection rate calculated for June and December for the two distributions 
the predicted amplitudes of modulation can also be calculated and compared as shown in figure 
11. Since the amplitude passes through zero, the relative error presents a sharp discontinuity at 
the critical energy. To avoid this, the absolute error was calculated instead.  

 
Figure 11 – Blue: Comparison of the predicted amplitude of detection 
rate modulation as a function of nuclear recoil for SHM distributions 
that omit and include the escape velocity of dark matter. Rate 
calculated energy for a WIMP mass of 70 GeV detected by a xenon 
based detector. Red: Absolute error arising from not considering the 
escape velocity of dark matter. 

The absolute error is found to be at its greatest for low recoil energies and tends towards zero 
as the recoil energy increases. Most importantly at the critical recoil energy of the original 
distribution there is a small non-zero error. This means that the critical energy function will be 
slightly different for the improved model. 
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2. Critical Energy 

We can then calculate the critical energy function for the new distribution. Calculating this using 
another root searching algorithm, the results from the two distributions can be compared as 
shown in figure 12.  

 
Figure 12 – Blue: Comparison of the predicted critical energy of a 
xenon bases detector as a function of WIMP mass for SHM 
distributions that omit and include the escape velocity of dark matter. 
Red: Absolute error arising from not considering the escape velocity of 
dark matter. 

Similarly the detection rate and amplitudes shown in figures 10 and 11 respectively demonstrate 
that there is very little noticeable difference in the predicted critical energies using the two 
different distributions. Interestingly, aside from some ‘anomalies’ for WIMP masses close to 
zero, due to the nature of the root searching algorithm, the relative error arising from neglecting 
the escape velocity of dark matter remains constant 0.45% for all WIMP masses. This is because 
the escape velocity of the dark matter has the consistent effect of decreasing the critical energy 
by 0.45%. Again, this change is very small, highlighting the validity of the infinite-escape-velocity 
approximation. These predictions could be further improved by including considerations of the 
spin-dependent interactions in the calculation of the WIMP-nucleus scattering cross section.  

C. Dark Matter Stream 

1. Mean Inverse Speed 

The distribution of a cold flow, such as a tidal stream, can be approximated to a Dirac delta 
function as given by equation 16. Using this approximation an analytical equation for the mean 
inverse speed can be found (See section II.B.3). The mean inverse speed of the simplified stream 
distribution is compared to that of the standard halo model in figure 13.  
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Figure 13 – Comparison of mean inverse speed for the Standard Halo 
Model and a cold flow stream of dark matter. Calculated for the case 
of a 70 GeV WIMP mass detected by a xenon based detector. 

Naturally the sharp discontinuities shown in figure 13 for the cold flow are not very physical. 
The model could be improved by considering the cold flow as having some small, non-zero 
velocity dispersion instead of one which is negligible. This however, is beyond the remit of this 
investigation.  

2. Differential Detection Rate 

The total differential detection rate is a linear sum of the contributions of the halo and the 
stream as shown in equation 18. For the purpose of demonstrating the potential impact of a 
stream on the annual modulation of dark matter detection an upper estimate of 0.2ߩ஧ is used 
for the density of dark matter within the flow. The resulting detection rate predicted for June 
and December is shown in figure 14. 

 
Figure 14 – Differential detection rate for the standard halo model 
with the addition of a cold flow stream of dark matter with a density 
20% of that of the local halo.  Calculated for the case of a 70 GeV WIMP 
mass detected by a xenon based detector.  

From figure 14 it can be seen that the presence of a dark matter stream would have a significant 
impact of the difference between the detection rates in June and December. The stream would 
therefore have a significant impact on the annual modulation of dark matter detection. The 
amplitude of this modulation is compared with that of just the SHM in figure 15. 
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Figure 15 – Comparison of the amplitude of detection rate modulation 
for the SHM and the SHM with the addition of a cold flow stream of 
dark matter with a density 20% of that of the local halo. Calculated for 
the case of a 70 GeV WIMP mass detected by a xenon based detector. 

Figure 15 shows that a stream would create a strong peak in the amplitude of modulation 
between two specific recoil energies. These energies relate to the detector speed ݒ୭ୠୱ(ݐ) in June 
and December through equation 1. Again, in reality these discontinuities would not be so sharp. 
The approximation for the distribution used is however sufficient for uncovering some of the 
primary impacts of a stream would have on the detection of dark matter.  

The root of the combined distribution amplitude lies on the first of the two discontinuities. It 
can therefore be expected that such a stream would have a very significant impact on the critical 
energy curve. This influence would however be heavily dependent on the specific shape of the 
stream distribution. As such, the delta function approximation used here is not sufficient for 
investigating the potential impact a dark matter stream might have on the predicted critical 
energy curve. Such investigation is therefore beyond the remit of this report.  

Figure 15 above does however highlight potential methods for determining the presence of a 
dark matter stream. In experiments in which the recoil energy of specific collision events can be 
measured, the stream could be inferred from the presence of a strong peak in the spectrum 
which deviates from the otherwise smooth curve described by the standard halo model. A less 
direct method comes from the total number of observed collision events. The presence of a 
stream would cause more dark matter particles to pass through the detector rather than / 
compared to the presence of the galactic halo alone. For the example case presented in figure 
14, by integrating the differential detection rate with respect to the recoil energy, it is found 
that the total rate is on average 22% larger than predicted based on the SHM alone. For this 
specific case the increase in detection rate is a little higher than the fractional density increase 
of 20%. The converse is true for smaller WIMP masses. For example, for a WIMP mass of 30 GeV, 
all else equal, the total rate is 18% higher than SHM predictions. As such, without knowing the 
specific mass of the dark matter particles the density of a stream could not be estimated through 
detection rate alone. 
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IV. Future of Direct Detection 

The simplest way to improve the sensitivity of direct detection experiments is to increase the 
mass of the detector. This is exactly what was done by DEAP3600 and XENON1T who are 
expected to release their results later this year [26]. These detectors have maximum sensitivities 
of ߪௌூ~10ିସ଺ ܿ݉ଶ and ߪୗ୍~10ିସ଻ cmଶ respectively [27, 28]. The latter presents a twofold order of 
magnitude improvement in sensitivity compared to the previous experiments presented in 
figure 2. This increase in sensitivity is driven by the increase in detector mass; the XENON1T 
detector uses about 2 tonnes of liquid xenon in contrast to the 161 kg used in the XENON100 
experiment [10].   

There is however a limit to the sensitivity of direct detection experiments. This is because 
detectors will soon be sensitive to interactions involving neutrinos. As a result neutrinos from 
our Sun will be able to contribute both electronic and nuclear recoils [26]. This additional 
background will have to be accounted for. One potential method for distinguishing between 
WIMPs and neutrinos comes from the modulation of their signals. 

Since the WIMPs originate from the galactic halo the detection rate is expected to peak in June 
(See section II.B). In contrast since the primary source of neutrinos is the Sun their detection 
rate should peak in early January when the Earth makes its closest approach to the Sun. In 
addition to this, the detection of atmospheric neutrinos has also been found to peak around 
January [29]. As such, the detection of a peak in June would still be strong evidence for the 
presence of dark matter in the form of WIMPs. This highlights the continued importance of the 
use of the modulation of dark matter detection rates. It has also been suggested that combining 
the detection data collected using different detector target nuclei could enable more of the 
neutrino background to be subtracted [30].  

V. Conclusion 

By modelling the velocity distribution for dark matter as a simple Maxwellian distribution it has 
been found that the rate of detection varies annually with a modulation that is dependent on 
WIMP speed. As such, a detector specific critical energy exists, at which the modulation 
amplitude is zero. This critical energy is calculated for some of the most common detector types. 
The phase in modulation of the dark matter detection can be related to a maximum/minimum 
critical energy which, using predictions of the critical energy dependence on WIMP mass, can 
be related to a maximum/minimum WIMP mass. By constraining the WIMP mass, this would 
help to further constrain the WIMP-proton scattering cross section.  

Furthermore, by modelling the distribution of a stream of dark matter as a Dirac delta function, 
the potential impacts of such a stream on the modulation of dark matter detection was 
investigated. It was found that such a stream could significantly change the critical recoil energy. 
Therefore, if such a stream existed in our local galactic region neglecting its impacts could result 
in incorrect mass constraints. Methods for determining the presence of a dark matter stream 
were also discussed. Most importantly, the presence of a stream would result a sharp peak in 
the detected velocity distribution. This peak would be roughly centred at a recoil energy relating 
to a WIMP speed given by the streams velocity relative to the detector.  
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