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Abstract

Axions are a theoretical particle hypothesized as a means of solving the Charge-Parity
(CP) problem of Quantum Chromodynamics (QCD) and, along with other axion-like par-
ticles (ALPs), are a strong candidate for dark matter. ALPs couple to photons with a
probability of conversion proportional to the square of the magnitude and length of the
perpendicular magnetic field. Current methods for detecting ALPs typically employ very
large magnetic fields over short distances. In this investigation, we consider restricting
our search to low mass axions to allow for photon propagation on astronomical scales
while using the Earth’s magnetic field to produce ALPs. We calculated the theoretical
limit on the capability of constraining the coupling constant achievable using current lunar
ranging technology by considering the eccentricity of the moon’s orbit and found that for
pseudoscalar ALPs a maximum constraint of gaγ < (7.2 ± 1.9) × 10−5GeV−1 for axion
masses ma < 10−7eV. We also consider a pair of satellites exchanging a beam of photons
based on technology used in the LISA Pathfinder experiment. We demonstrate that a
polar orbit would be most effective at constraining gaγ finding a maximum constraint of
gaγ < (2.0 ± 0.5) × 10−12GeV−1 and g′aγ < (4.0 ± 1.0) × 10−12GeV−1 after a months
orbit for pseudoscalar and scalar ALPs respectively for masses ma < 2× 10−6eV.
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1 Introduction
The axion is a hypothetical elementary particle which appears in many extensions of the

standard model of particle physics. Their existence was first proposed in 1977 by Peccei
and Quinn to solve the charge-parity (CP) problem of quantum chromodynamics (QCD), a
problem yet to be answered within the standard model of particle physics [1]. A physical law
has CP symmetry if it remains true after interchanging each particle with its antiparticle while
simultaneously inverting the spatial coordinates of the system. As early as 1964, physicists
have observed CP symmetry violation in electroweak interactions. However, there is no verified
observation of CP violation in the strong sector. This is a type of fine-tuning problem as there
is no known reason why CP symmetry should be conserved in the strong sector. The QCD
Lagrangian contains a CP violating term with a coefficient proportional to

θ̄ = θQCD + arg det(Mquark), (1)

where θQCD is the θ-vacuum and Mquark is the quark mass matrix [2]. A non-zero value for θ̄
would result in the neutrino having an electric dipole moment. However, the absence of such
a dipole moment has been confirmed to a precision of dn < 3.0× 10−23 e cm [3]. The theory
developed by Peccei and Quinn, known as PQ theory, proposes altering the QCD Lagrangian
by considering θ̄ as a dynamic field

θ̄ =
a(x)
fa

, (2)

where a(x) is the axion field and fa is the axion decay constant. This dynamic field is a pseudo-
Goldstone boson field which arises from the breaking of a global U(1) symmetry caused by the
vacuum expectation values of a scalar field.

Low mass axions ma < 0.1eV/c2, as well as many other very weakly interacting slim par-
ticles (WISPs) may have been produced non-thermally in the early universe via a mechanism
called vacuum-misalignment [4]. Vacuum misalignment is an effect hypothesised in PQ theory
which occurs when a particles field has an initial value which is not located near a potential
minimum. This produces an oscillation in the particles field around the nearest minima, radi-
ating energy via decay processes until the minimum is reached. This causes the CP-violating
coefficient to tend towards a near-zero value, therefore explaining the lack of observed CP-
violation. Due to their long lifetimes and weak couplings to particles of the standard model,
these particles are prominent dark matter candidates [5].

Although the axion was first hypothesised in 1977, there has been a recent resurgence of
interest due to lack of evidence of Weakly Interacting Massive Particles (WIMPs) from both
particle collider experiments and direct detection experiments [6][7]. The axion hypothesized
by Peccei and Quinn is a pseudo-scalar Goldstone Boson. However, many other axion-like
particles (ALPs) have also been predicted by Type IIB string theory including both scalar and
pseudoscalar variants [8] [9].

The effective Lagrangian density of photons and axions is given by

L = −1

4
FµνF

µν − 1

2
(∂µa∂

µa−m2
aa

2)− 1

4
gaγaFµνF̃

µν , (3)

where a is the axion field, ma is the axion mass, gaγ is the coupling constant, Fµν =
∂µAν − ∂νAµ is the electromagnetic field tensor and F̃µν = 1

2εµνρσF
ρσ is the dual of the

electromagnetic field tensor where εµνρσ is defined as
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εµνρσ =


+1 if (µ,ν,ρ,σ) is an even permutation of (1,2,3,4)
−1 if (µ,ν,ρ,σ) is an odd permutation of (1,2,3,4)
0 otherwise

. (4)

The final term in (3) indicates that we expect a three vertex interaction involving a single
axion and two photons. With the strength of this particle coupling being given by gaγ . Due to
this coupling, it is possible for an axion to convert into a photon via the Primakoff production
method in stars [10] or alternatively and more relevant to our investigation, an axion may
be converted to a photon and vice-versa in the presence of an inhomogeneous magnetic field.
The magnetic field acts as an electromagnetic background which supplies the additional virtual
photon required for the conversion. The field must be inhomogeneous as to provide the three-
momentum necessary to change a spin-1 photon into a spin-0 axion [11]. For pseudoscalar
axions and ALPs, the probability of this conversion is found to be

Pa↔γ =

(
gaγB sin(θ)

q
sin

(
qL

2

))2

, (5)

where B is the magnetic field strength, θ is the angle between the field and the direction of
the photon beam, L is the distance of magnetic field that the photon propagates through and
q is the axion-photon momentum transfer in a vacuum [12]. In a vacuum, the momentum
transfer is given by

q =
m2

a
2ω

, (6)

where ω is the photon frequency [13]. For scalar ALPs, equation (5) is modified by replacing
gaγ sin(θ) with g′aγ cos(θ), in which g′aγ is the coupling between the photon and scalar ALPs.
Equation (5) is simplified the limit qL/2 � 1 for θ = π/2 as this allows us to remove the
sin(θ) and sin

(
qL
2

)
terms. The equation then becomes

Pa↔γ =

(
gaγBL

2

)2

. (7)

Equation (7) shows that, in the limit of small axion masses, the conversion probability is equally
dependent on the square of both the magnetic field strength and the length of the magnetic
field through which the photon propagates. These two factors are central to the majority of
modern axion searching experiments.

2 Current Research
Due to the predicted low mass of axions, it is not possible to detect them directly as is

currently being performed in an attempt to detect WIMPs [14]. Instead, experiments focus on
detecting them indirectly through their coupling with photons.

2.1 Haloscopes

If axions form at least a substantial component of our galaxies dark matter halo, it is
expected that there will be a large flux of axions passing through the Earth at all times.
Therefore, if we present these axions with an inhomogeneous magnetic field then we should
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expect to observe some of them convert into photons [11] through the coupling given by
equation (5).

Currently, the leading haloscope experiment is the Axion Dark Matter eXperiment (ADMX).
In this experiment, a superconducting solenoid is used to generate a 7.6T magnetic field. A
resonant microwave cavity is then used to detect photons converted from axions found in our
galaxy’s dark matter halo [15]. Based on assumptions regarding the density and distribution of
dark matter within our galaxy, the excluded region of axion parameter space, shown in figure
1, is produced.

As can be seen from figure 1, this type of experiment is limited in the range of axion masses
it can constrain. Furthermore, if axions do not make up any fraction of the dark matter at all,
the haloscope method becomes completely redundant.

2.2 Helioscopes

As discussed, axions should be produced in the sun through processes such as the Primakoff
effect. Helioscope experiments aim to detect these axions by aiming a dipole magnet towards
the Sun to collect axions produced through solar emission. The magnetic field then provides
the virtual photons required for the coupling. The photons produced following the conversion
process are then detected.

To date, the most sensitive helioscope is the CERN Axion Space Telescope (CAST) col-
laboration [16]. This experiment uses a 9T refurbished test magnet from the Large Hadron
Collider [13]. The experiment is only able to maintain coherence in the limit qL/2 � 1.
Therefore, to be able to constrain the coupling constant for axion masses up to ma ≈ 10−2eV,
the field length, L, must be small. This limits the probability of conversion that is obtainable.
The area of the coupling-mass parameter space excluded by CAST is shown in figure 1. CAST
currently produces the best constraints on the coupling constant between photons and pseu-
doscalar ALPs of any experiment, constraining the coupling to within gaγ < 0.66×1010GeV−1.
As such, this value will be used as a benchmark for our own results.

The International AXion Observatory (IAXO) is proposed to be the successor to CAST. Its
purpose-built dipole magnet will utilise an axion-sensitive area around 1500 times larger than
that used by CAST. Additionally, IAXO will be able to track the sun across the sky for around
12 hours a day, four times longer than that of its predecessor. These combined features allow
IAXO to achieve sensitivities four to five times greater than CAST, relating to more than an
order of magnitude improvement in the constraints on the coupling constant, constraining it to
within gaγ . 3× 10−12 GeV−1 [17]. The predicted exclusion of the coupling-mass parameter
space is compared to the current limits imposed by CAST in figure 1.

The key drawback of helioscope experiments is that they rely on the Primakoff process
occurring in the sun and the resulting axions or ALPs being emitted towards the detector.
This introduces an element of uncertainty to the experiment that cannot be easily controlled.
Additionally, due to the direction of the magnetic field used by both CAST and IAXO, these
experiments are unable to constrain the coupling strength between photons and scalar ALPs.

2.3 Light Shining through a Wall

Both the haloscope and helioscope method exhibit similar problems; their ability to infer
the presence of axions is dependent on either dark matter being composed of axions or axions
being produced in the sun. The strength of ’Light Shining through a Wall’ (LSW) experiments

5



Student ID: 4207372 & 4227772 David Ellis & Shane Fenn

is that their ability to infer the presence of ALPs is dependent only on the existence of the
particle and their coupling to photons.

In these experiments, a laser beam is directed at a classically opaque wall in the presence
of a strong magnetic field. There is then a small probability that some of these photons will
be converted into axions and pass through the wall due to their weak coupling to matter of
the standard model. Once they have passed through the wall, it is possible for these axions to
revert back into photons which can then be detected.

Currently, the best limits produced by a LSW experiment are set by the Any Light Particle
Search (ALPS) experiment, constraining the coupling strength to within gaγ . 7×10−8GeV−1

(ma . 10−3eV) for both scalar and pseudoscalar ALPs [12]. This sensitivity is around three
orders of magnitude worse than the constraints imposed by CAST. This sensitivity will, however,
be greatly improved upon by its successor ALPS-II, which is predicted to achieve sensitivity
down to gaγ . 2× 10−11GeV−1 (ma . 10−3eV) which surpasses the limits imposed by CAST
[18]. These experiments provide the best constraints on the photons coupling to scalar axion-
like particles and therefore will be used as our benchmark for this type of constraint.

Axions and ALPs are not the only theoretical particles that can be inferred this way.
As such, LSW experiments also provide constraints on the existence of hidden photons and
minicharged particles. The primary drawback of this type of experiment, however, is the
requirement that the axion-photon conversion must take place twice for the event to be de-
tectable. This makes detecting the event much less likely.

3 Astronomical Constraints

3.1 Stellar Evolution

There are a number of mechanisms through which axions could be produced within stars.
One such process is the Primakoff effect

γ + Ze → Ze+ a. (8)

Axions produced this way would carry energy away from the star similarly to thermal
neutrinos. The lifetime of stars can, therefore, provide an indication of the efficiency of these
process and therefore the axion mass. From this we can infer the limit ma .0.4eV as shown
in figure 1 [19].

3.2 Supernova Core Collapse

Neutrinos take a very long time to escape the supernova core after collapse due to the
extreme pressures and temperatures. However, as with their emission from stars, axions would
carry energy away from the inner core. This energy loss would impart an observable effect
on the emitted neutrinos. The duration of the neutrino signal from a supernova, therefore,
provides a limit on the coupling between axions and nucleons [19]. This argument is invalidated
however if the coupling between axions and nucleons is strong enough to prevent many axions
from escaping.
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Figure 1: gaγ-ma parameter space including region excluded by CAST and area expected to
be excluded by IAXO. Diagonal yellow band: Typical QCD axion models defined roughly for
mafa ≈ mπfπ. The area below the red dashed line is viable ALP dark matter parameter space.
The area to the right of the green dashed line is excluded by stellar evolution considerations.
Figure modified from [16].
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4 Our Concept
The current axion searching methods primarily rely on increasing the axion production

probability by employing a very strong magnetic field over relatively short distances. The
limitation of many of these experiments arises from the technical challenge of producing mag-
nets powerful enough to generate the required fields. Equation (7) shows us that in the low
mass regime we may be able to use a weaker magnetic field over a larger distance to produce
probabilities and therefore constraints that may surpass those from other experiments. The
advantage of this approach is that instead of generating a magnetic field ourselves, we can
make use of the geomagnetic field produced in the Earths core. Although the strength of this
field is only on order of tens of microtesla, the scale of the field allows us to transmit photon
beams over much greater distances through the weaker magnetic field. This opens possibilities
for new methods of indirect axion detection.

Unfortunately, due to the inhomogeneous nature of the geomagnetic field at large scales,
it is not possible to use equation (7) to accurately calculate the axion conversion probability
over these large distances. Instead, we will have to develop a method that addresses the
inhomogeneity of the magnetic field as well as considering the two-way nature of the conversion
process, as some axions may convert back into photons after their initial conversion. The logical
starting place is the Lagrangian density of axions and photons given by equation (3).

4.1 Theory

If we apply the Euler-Lagrange equations to (3) then we recover the Klein-Gordon equation

(∂2
µ −m2

a)a =
1

4
gaγγFµνF̃

µν . (9)

For our system, consisting of a photon beam propagating through a magnetic field, the
electromagnetic field A has two components, a background magnetic field and a perturbation
to this field caused by the photon propagation. This allows us to write A as a sum of these
two components, Aµ = AµB + Aµγ where AµB and Aµγ are the background magnetic field
and photon propagation components of Aµ respectively. When we expand FµνF̃

µν we may
use the fact that the effect of the photon perturbation on the field will be small allowing us
to neglect Aγ terms higher than first order. We also make the gauge choice that A0 = 0 to
obtain

FµνF̃
µν = 4[∂0A1B(∂2A3B − ∂3A2B + ∂2A3γ − ∂3A2γ) + ∂0A1γ(∂2A3B − ∂3A2B)

+∂0A2B(∂3A1B − ∂1A3B + ∂3A1γ − ∂1A3γ) + ∂0A2γ(∂3A1B − ∂1A3B)

+∂0A3B(∂1A2B − ∂2A1B + ∂1A2γ − ∂2A1γ) + ∂0A3γ(∂1A2B − ∂2A1B],

(10)

which, if we consider a constant magnetic field and therefore set ∂0AµB = 0, can be simplified
to

FµνF̃
µν = 4[∂0A1γ(∂2A3B − ∂3A2B)

+∂0A2γ(∂3A1B − ∂1A3B)

+∂0A3γ(∂1A2B − ∂2A1B].

(11)
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This can be further simplified by recognising that Bi is given by the curl of A through the
equation (∇×A)i = εijkl∂jAk and writing the background magnetic field terms AµB in terms
of the magnetic field B to find

FµνF̃
µν = 4[(∂0A1γ + ∂0A2γ + ∂0A3γ)B0]. (12)

Since the photon-axion interaction only occurs in the presence of a perpendicular magnetic
field it is convenient to write the field A as a plane wave in terms of the field components that
are either perpendicular or parallel to the magnetic field such that for the case of a photon
propagating in the z direction

A(z, t) = i

Ax(z)
Ay(z)
Az(z)

 e−iωt = i

A‖(z)

A⊥(z)
0

 e−iωt, (13)

where A‖ and A⊥ are the parallel and perpendicular components of A respectively. We may
also write the axion field as a plane wave a(z, t) = a(z)e−iωt. Next, to find the equations of
motion for this system we use the wave equation in which we have set a(z) = eikz, a(t) = eiωt

to obtain

∂2a(t)

∂t2
− ∂2a(z)

∂xi2
= 2ω(ω − i∂z)a(z, t), (14)

where we have used ω2+∂2
z = (ω+i∂z)(ω−i∂z) and the dispersion relation ω ≈ k. Substituting

equation (14) into the Klein-Gordon equation produces the first equation of motion[
(ω − i∂z)−

m2
a

2ω

]
a = −1

2
gaγBA‖. (15)

The remaining equations of motion are calculated in a similar way and with the introduction
of the term Ψ where

Ψ =

A⊥(z)
A‖(z)

a(z)

 , (16)

we may write the equations of motion in matrix form as

i
dΨ

dz
=

[
ω − i∂z +M

]A⊥(z)
A‖(z)

a(z)

 , (17)

where

M =

0 0 0
0 0 1

2gaγB

0 1
2gaγB −m2

a
2ω

 . (18)

However, we must now take into account the effect of the Euler-Heisenberg Lagrangian

α2

90m4
e

[
(FµνF

µν)2 +
7

4
(FµνF̃

µν)2
]
, (19)

which is added to the earlier Lagrangian (3) as an extra term where α = e2/4π and me is the
electron mass. The addition of this term changes the matrix M to
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M =

∇⊥ 0 0
0 ∇‖ ∇m

0 ∇m ∇a

 , (20)

where ∇⊥ = 2ωξsin2(Θ), ∇‖ = 7
2ωξsin

2(Θ) and ∇a = −m2
a

2ω are the momentum differences
between the respective modes and that of a photon of the same energy in a vacuum and
∇m = B

2 aγ
sin(Θ) is the off-diagonal component. These momentum differences are dependant

on ξ = α 1
45π

B
Bcrit

2 which is related to the refractive indices of polarisation [20], the critical
magnetic field strength Bcrit =

m2
e
e and Θ, the angle between the external field direction and

the photon momentum. It is worth noting here, that for the case of a scalar in place of a
pseudoscalar axion M is analogous upon the exchange of the ∇‖ and ∇⊥ terms. However,
for this calculation we shall consider only the pseudoscalar axion. Since we are working in the
simple single domain model only the parallel component of the field A‖ mixes with the axion.
Therefore, we may ignore the perpendicular field term A⊥ in M and reduce (4.1) to the 2 x
2 matrix

M =

[
∇‖ ∇m

∇m ∇a

]
, (21)

which may be diagonalised by a rotation matrix to give the resulting field strengths[
A′

‖
a′

]
=

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

] [
A‖
a

]
. (22)

The strength of the mixing is given by the ratio of the off-diagonal terms of M to the difference
of the diagonal terms, θ = ∇m

∇‖−∇a
or for the weak mixing case where θ � 1

tan(2θ)

2
=

∇m

∇‖ −∇a
. (23)

This can be simplified if we measure the phases of all modes relative to the unmixed parallel
component A‖. Therefore, if we define the terms

∇′
‖ =

∇‖ +∇a

2
+

∇‖ −∇a

2 cos(2θ)
, (24)

∇′
a =

∇‖ +∇a

2
−

∇‖ −∇a

2 cos(2θ)
, (25)

and neglect the common phase ei(wt−wz−∇‖z) we find the following result[
A‖(z)

a(z)

]
= M(z)

[
A‖(0)

a(0)

]
, (26)

where

M =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
e
−i(∇′

‖−∇‖)z 0

0 e−i(∇′
a−∇‖)z

] [
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
. (27)
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We have modelled our system in such a way that the magnetic field is uniform across the
photon propagation length. This, however, this is not the case for the systems that we shall
be investigating. This problem is resolved by splitting the whole field length z into many
smaller segments of length dz over which the field is assumed to be constant. The magnitude
of the perpendicular component of the magnetic field across each segment is calculated and
from this, the amplitude of A‖(z) and a(z) can be found after the distance dz. This is then
repeated across the desired length, using the amplitude from the end of the prior segment as
the initial amplitude for the next using equation (27). There are two distinct methods that we
have chosen to investigate, with the aim being to study how viable they are for improving the
constraints on the coupling constant gaγ .

4.2 Lunar Laser

The first method we consider is the emission of a beam of photons from the Earth to
the moon. The beam is then reflected and returned to Earth by the reflectors on the lunar
surface which form part of the lunar laser ranging experiments [21]. There are a total of
five reflectors on the lunar surface placed by American astronauts and Soviet rovers. These
are used to calculate the Earth-Moon distance to high precision. The primary purpose of
these experiments is to test Einstein’s theory of general relativity. However, since the laser
beams propagate through the Earth’s magnetic field, some photons may be lost due to the
productions of axions or ALPs. Once the photons are collected on their return to Earth, if there
is a significant reduction in the number of photons detected this may indicate that axion or
ALP production has occurred. The main challenge with this method is that photon loss cannot
be attributed purely to axion conversion, atmospheric interference and beam divergence will
also contribute to a reduction in photon count. In order to make this a more viable method,
we use the fact that the radius of the lunar orbit changes over the course of a month due to its
eccentricity. This periodic modulation in the distance of photon propagation will change the
conversion probability and therefore should produce a detectable pattern in the photon count
that is independent of the other sources of photon loss.

4.3 Satellite-Satellite laser

For the second method, we consider a pair of satellites with a fixed distance of separation,
orbiting the Earth, with one emitting photons that are detected by the other. Again, due to
the geomagnetic field, the photons may convert into axions resulting in fewer photons being
detected than is expected. However, similar to the lunar laser experiment we are unable to
isolate the source of photon loss as being purely down to axion production, although we will
have more control over certain variables.

We consider two distinct orbits; a polar orbit, in which the satellites pass over both Earth’s
magnetic poles and an equatorial orbit, in which the satellites orbit the Earth around the equa-
tor. For the polar orbit, there will be a large modulation in the component of the geomagnetic
field that is perpendicular and parallel to the photon beam. The perpendicular field compo-
nent is greatest at the poles and falls to near zero at the equator. The opposite is true for
the parallel field component. If axions are being produced then this should provide a periodic
change in the detected photon count over the course of a complete orbit. This would be a
clear ’smoking gun’ for the presence of a coupling between photons and axion. Additionally,
since the photon beam also experiences a modulated parallel magnetic field this method can
also be used to constrain the photon coupling to scalar ALPs.

11



Student ID: 4207372 & 4227772 David Ellis & Shane Fenn

For an equatorial orbit, the effect of solar wind causes a difference in the geomagnetic field
strength between the side of the Earth facing the sun and the side which is facing away. Again,
this difference in field strength should produce an observable signal in the photon count as the
satellite orbits between the two sides of Earth.

5 Modelling Photon Loss
Since both methods considered involve measuring the change in the number of photons

it is important to maximise the number of photons that are expected in the absence of the
photons coupling to axions. To do this we require a firm understanding of how many photons
will be lost through non-conversion processes. The two main sources of photon loss will be due
to atmospheric interference and beam divergence. The beam divergence can be characterised
by the radius of the beam after travelling a certain distance. The radius φ of a Gaussian beam
after propagating a distance L through a vacuum is given by

φ =
2Lλ

πD
, (28)

where λ is the wavelength of light being considered and D is the diameter of the primary mirror
used for emission [22]. However, if we consider a beam travelling through the atmosphere the
limit of diffraction is most affected by the Fried parameter r0 which depends on the local
atmospheric conditions and is a function of wavelength proportional to λ

6
5 . This changes the

beam radius such that φ2λ = 2φλ/2
6
5 . For the case where the beam is perpendicular to the

Earth’s surface the Fried parameter is given by

r0 =

[
0.423k2

∫
path

C2
n(z)dz

]− 3
5

, (29)

where k = 2π/λ is the wavenumber and C2
n is the atmospheric turbulence strength along

the path of the beam, z. When the beam is at a zenith angle ζ the Fried parameter is
r0 = (cos ζ)

3
5 r0(ζ = 0). The atmospheric turbulence strength can only be found accurately

through experimental data as it depends on the local conditions that are subject to change.
However, relatively crude estimates suitable for this initial investigation can be found by using
the mathematical Hufnagel-Valley model

C2
n(h) = 5.94× 10−53 v

27

2
h10e(−h/1000) + 2.7× 10−16e(−h/1500) +Ae(−h/100), (30)

where h is the height at which C2
n is to be calculated for, A is the relative strength of the

turbulence at ground level and v represents the wind speed at higher altitudes [23]. For general
purposes these variables are typically given values of A = 1.7× 10−14m−2/3 and v = 21m.s−1

[24].
The moon follows an elliptical orbit around the Earth with a semi-major axis a = 384.40×

103km and an eccentricity e = 0.054900 [25]. The time-averaged distance between the centres
of the Earth and Moon is 385km but due to the elliptical nature of the orbit, this distance varies
between 356.5×103km and 406.7×103km every 27.5 day period. There are smaller oscillations
of 3700km and 2955km to the lunar orbit every 31.8 days and 14.76 days respectively. However,
for the purpose of this investigation shall only include only the larger monthly oscillation. To
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ensure that our findings from the analysis of these experimental methods are based on currently
achievable technology and not unfeasible performance parameters we have, where appropriate,
chosen to model our parameters on existing experiments.

For the lunar laser investigation, the performance capabilities of the Apache Point Obser-
vatory Lunar Laser-ranging Operation (APOLLO) was used as a reference. APOLLO uses a
2.3W laser to generate light of wavelength 532nm in 100ps pulses with a 20Hz repetition rate.
The APOLLO telescope has an aperture of 3.5m and is situated in New Mexico at an altitude
of 2.8km [26]. For our investigation, we simplify the system by assuming that the telescope is
based at the Earth’s equator at sea level and the lunar reflector is based at the Moon’s equator,
which is modelled as being directly above the telescope. This allows us to use equation (5)
without needing to consider with angular effects on divergence.

Assuming standard atmospheric turbulence, APOLLO produces a beam divergence on the
scale of a few arcseconds. This results in a beam diameter of 1.9km at the lunar surface
with the photon distribution across this area close to Gaussian in profile. This means that
only around one in every 25× 106 photons that are initially launched reach the small reflector
on the lunar surface. There are numerous reflectors of various sizes and efficiency’s on the
surface so for our investigation we have used the performance parameters of the APOLLO 11
reflector since this is the reflector that results in the largest number of photons being returned.
APOLLO 11 consists of 100 silica corner cube reflectors, each with diameter 3.8cm. The corner
cubes of this reflector return the photons with a divergence of 7.5 arcseconds, resulting in a
beam diameter of 15km once the beam returns to Earth. From this, an aperture of 1m will
collect, on average, 1 in 2× 108 returning photons. Together, this results in only around 1 in
every 1016 emitted photons being detected after the journey. For APOLLO, only around 3775
photons are recorded every minute [21]. Assuming a night of measurements lasts 5 hours, a
total of 11.3× 105 photons will be measured during this period.

We must also establish how many photons will be lost to non-conversion processes and
can be detected for the case of a laser emitted and detected by a pair of satellites. In order
to ground our experiment in reality we chose to use the performance parameters of the Laser
Interferometer Space Antenna (LISA) Pathfinder experiment. LISA is an interferometer de-
signed to be capable of searching for gravitational waves. Planned for launch in 2034, LISA
consists of three spacecraft arranged in an equilateral triangle of sides 2.5 × 106km. LISA
Pathfinder was a proof-of-concept mission launched in 2015 to test the technologies needed
for LISA. The minimum altitude of the Pathfinder spacecraft at any time is 500km [27]. The
laser used by LISA has a power of 20mW and produces light of wavelength 1064nm, which is
detected by a 40cm diameter telescope [28]. The advantage of the satellite experiment is that
we have greater control over some of the parameters such as altitude and the distance that the
laser travels. Equation (7) shows us that for the greatest probabilities of axion production we
want to maximise both the length and the magnetic field strength. This results in a need to
compromise between increasing the length of the system and passing the beam as close to the
Earth as possible without the losing photons to the atmosphere. It is important to avoid the
beam propagating through the atmosphere as this will increase the level of beam divergence
and photon absorption thus reducing the number of photons we are able to detect. Although
the magnetic field will be significantly weaker, we have chosen to match the lowest altitude
of LISA of 500 km as this enables us to safely ignore the effects of atmospheric turbulence.
The outgoing beam of LISA has a half cone divergence of 1.6 µrad. This means that we may
separate the satellites by a maximum distance of 125km before having to consider the loss of
photons due to beam divergence. This allows us to increase the number of photons detected
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while also simplifying the calculations.
For the satellite experiment, we want to observe a modulation in the number of photons

being detected as the satellites orbit the Earth. To make this difference as large as possible, we
have chosen to only collect data from the satellites at the points of maximum and minimum
strength of the relevant magnetic field component. We simplify our model by neglecting the tilt
of the Earth’s axis relative to its heliocentric orbital radius. For the polar case, the maximum
field strength will be found above either of the poles and the minimum field strength will be
above the equator. These correspond to an angles of θ = ±π/2 radians from the equator
for the maximum points and angles of θ = 0, π radians for the minimum points. The parallel
field maxima and minima are offset by pi/2 radians to those of the perpendicular field. For
the equatorial orbit, the points of maximum and minimum magnetic field strength will depend
largely on the angle we choose for the solar wind to approach the Earth. Again, a compromise
must be made between increasing the time spent gathering photons, and therefore a greater
number and having the largest difference between the conversion probabilities. We have chosen
to only consider photon collection when the satellite pair is within 1% of the maximum and
minimum conversion probability. To determine the size of this region a model for the magnetic
field surrounding the Earth must first be developed.

6 Modelling the Geomagnetic Field
To estimate the constraining capability of experiments using the Earth’s magnetic field,

a simple model of the magnetic field surrounding the Earth was developed. This model is
calculated by summing the contributions of the geomagnetic dipole field BDipole with the field
generated by the solar wind interacting with the Earth’s magnetosphere BSW. The total field
is then given by

B = BDipole +BSW. (31)

6.1 Dipole Field

Due to it’s electrically conducting fluid core, the Earth produces a magnetic field very
similar to that of a simple dipole magnet [29]. The contribution of this field dominates the
total field at the low altitudes considered within this investigation. The dipole magnetic field
can be approximated as the sum of radial and angular components Br and Bθ respectively
where

Br = −2B0

(
RE

r

)3

cos θ, (32)

and

Bθ = −B0

(
RE

r

)3

sin θ, (33)

in which B0 is the magnitude of the magnetic field at the equator, r is the distance from the
centre of the Earth, θ is the angle from the magnetic North pole and RE is the radius of the
Earth [30].

To determine the value for B0 the World Magnetic Model (WMM) was used. This is an
empirical model of the Earth’s magnetic field developed by the National Geophysical Data

14



Student ID: 4207372 & 4227772 David Ellis & Shane Fenn

Center and the British Geological Survey. This model was used through a single-point web
calculator provided by the group to calculate the Northern component of the Earth’s magnetic
field BN as a function of the longitude as shown in figure 2 [31]. The uncertainty in the WMM
field is 138nT and was therefore not plotted due to its negligible size.
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Figure 2: Northern component of the magnetic field as a function of the longitude calculated
using the World Magnetic Model

The dipole equatorial field B0 was found by calculating the mean of the Northern field
component shown in figure 2 with variation in this field being used to quantify the error. A
value of B0 = 31.9+8.7

−6.9µT was determined. The magnetic field due to the dipole approximation
of equations (32) and (33) is compared to that of the WMM in figure 3. The WMM points
are calculated above the equator at a longitude of 40° east since the Northern field component
at this point is very close to the mean.

6.2 Solar Wind

The solar wind is composed of charged particles, the net motion of which also generates
a magnetic field. Although the magnitude of the magnetic field produced by the solar wind
at the altitudes we consider is much less than that of the geomagnetic field, including its
effects enables us to consider the satellite equatorial orbit and adds a level of detail to the
model. The flow of charged particles is largely restricted to outside of the magnetopause. The
magnetopause is the boundary between the magnetosphere and the plasma emitted from the
Sun. The size of the magnetopause is characterised by the Chapman-Ferarro distance. This
is the distance from the Earth along the heliocentric radius at which the magnetic pressure of
the geomagnetic field balances the solar wind pressure and is given by

RCF = RP

(
B2

surf

µ0ρV 2
SW

)1/6

, (34)
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Figure 3: Comparison of the northern component of the magnetic field as calculated using the
dipole approximation of and as calculated using the WMM data as a function of altitude.

where RP is the planetary radius, Bsurf is the field strength at the equator, ρ is the solar wind
density, µ0 is the magnetic constant and VSW is the velocity of the solar wind [32]. At one
astronomical unit from the sun, the solar wind has a velocity of VSW = 468+242

−148 km s−1 with a
proton number density np = 8.7+11.3

−5.3 cm−3 [33]. For the Earth, the Chapman-Ferarro distance
is measured to be around 10.4RE .

Since we are neglecting the tilt of the Earth’s axis, we define x, y and z as Cartesian
coordinates in which z is in the direction from the Sun to the Earth, y is along the Earth’s axis
and x is in the direction perpendicular to y and z.

The solar wind can be modelled as an incompressible fluid flowing over a Rankine half
body. This is a fluid flow solution composed of the superposition of the solutions for the linear
flow of a stream φstream and the spherical flow from a source φsource such that

φ = φstream + φsource. (35)

The stream source has a velocity potential of

φstream = VSWz (36)

and the spherical flow from a source has a velocity potential of

φsource =
m

2π
ln
√
x2 + y2 + z2, (37)

where m is the strength of the source flow. This produces a total velocity potential of

φ = VSWz +
m

2π
ln
√
x2 + y2 + z2. (38)
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Figure 4: Velocity field solution for magnetopause modelled as a Rankine halfbody. The
velocity field within the halfbody, shown as a red dashed line, is set to zero.

The velocity is then calculated by differentiating the velocity potential

vxi =
∂φ

∂xi
. (39)

To model the magnetosphere we require that the velocity is zero at (0, 0,−RCF). This allows
us to define the strength of the source m to be

m = 2πVSWRCF. (40)

A cross-section of the total flow solution for a Rankine halfbody is presented in figure 4. The
absence of charged particles within the magnetopause is then imposed by requiring that within
the half body the velocity is zero.

The magnetic field generated by the solar wind is then calculated. This is done by separating
the considered space into N segments in each direction, giving a total of N3 segments each of
volume V , where segment i has a mean particle flow velocity ~vi. The magnetic field produced
by segment i at a point P separated by vector ~Ri,P is then given by the Biot-Savart Law

~Bi,P =
µ0enpV

4π | ~Ri,P |3
~vi × ~Ri,P , (41)

where e is the electron charge. The total magnetic field produced by the solar wind is then
given by the sum of the contributions of each segment

BSW =

N3∑
i=1

~Bi,P =
µ0enpV

4π

N3∑
i=1

~vi × ~Ri,P

| ~Ri,P |3
. (42)
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Figure 5: Colour map of the magnitude of the magnetic field log |B| in the y-z plane calculated
by combining the dipole field generated in the Earth’s core with the field produced by the flow
of the solar wind over the magnetopause.

Combining the field contribution from the solar wind calculated using equation (42) with the
dipole equation given by equations (32) and (33) we are able to calculate an approximate
magnetic field around the Earth as shown in figure 5. The complete process for calculating
the total magnetic field is outlined in the flow diagram in figure 6.

Using this method we are able to calculate the magnetic field incident on our photon
beams. Due to the shape of the Earth’s dipole field, a beam exchanged between a pair of
satellites in a polar orbit experiences a significant magnetic field both parallel and perpendicular
to it. Therefore, constraints can be generated for both scalar and pseudoscalar ALPs from a
polar orbit. The average absolute value for the magnetic field perpendicular and parallel to
the photon beam for a satellite pair with an altitude of 500km and a 125km separation in a
polar orbit is shown in figure 7. We see that the perpendicular field varies by around 50µT
and around 25µT for the parallel field. An experiment of this type is, therefore, better at
constraining pseudoscalar ALPs than scalar ones. The primary source of error is the error in
the value for the dipole equatorial field B0.

An identical pair of satellites in an orbit over the Earth’s equator, however, experiences a
negligible parallel field and can therefore only provide constraints on pseudoscalar ALPs. The
average field strength perpendicular to the beam is shown in figure 8. For this orbit, we see
that the perpendicular field varies by around 2.4µT. Here, the primary error is a combination
of the errors on B0, the proton density np and the solar wind velocity VSW. The size of this
error is more a result of the variability of the solar weather rather than uncertainty in the
calculation. It can be seen that a polar orbit should produce more significant results than an
equatorial orbit due to the larger variation in both parallel and perpendicular magnetic fields
and would also be more reliable since there is less uncertainty in the generation of this field.

Referring back to section 5 we may now calculate how many photons the satellite exper-
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iments will be able to detect. At an altitude of 500km, the satellites will have a velocity
of 7.6km s−1. We find that this results in the satellites being within 1% of the maximum
or minimum conversion probabilities for a total of 567 seconds each orbit. During this time
period, a 20mW laser emits 6.07× 1019 photons.

Start
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velocity field

Calculate
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coordinates,

R

Generate
N3 array of

field
segments Rt

i = 0 

Is Rt,i in the
halfbody? 

Add field due
to Rt,i on R  

Calculate
BDipole 

B = BDipole + BSW 

i = i+1 

Build empty
BSW of length
equal to R

Yes

Yes

No

No
i = N3? 

return B

Figure 6: Flow diagram for computer code that calculates the magnetic field due to the solar
wind and the Earth’s dipole field.

7 Generating constraints
We have modelled two different systems in which the photons emitted from a laser have a

chance of converting into axions or ALPs. For the lunar laser experiment, this probability varies
due to the length of the beam changing. In the satellite experiment, it is the modulation of the
magnetic field strength that causes the probability to change, while the beam length remains
fixed. The variation in the conversion probability results in different numbers of photons being
detected. To quantify the potential constraining capability of these methods we need to be
able to relate the change in the number of photons detected to the axion-photon coupling
constant gaγ .

If we expect Nexp photons to be detected in the absence of a photon-axion coupling, with
a counting error of σ then to be able to detect a difference in the number of photons that are
detected we require that

∆PNexp > σ, (43)

where ∆P is the difference between the maximum and minimum production probability

∆P = Pmax − Pmin, (44)
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Figure 7: Mean absolute value for the magnetic field perpendicular (top) and parallel (bottom)
to the photon beam exchanged between two satellites at an altitude of 500km, separated by
125km orbiting the Earth in a polar orbit.
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Figure 8: Mean absolute value for the magnetic field perpendicular to the photon beam
exchanged between two satellites at an altitude of 500km, separated by 125km orbiting the
Earth in an equatorial orbit.
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Figure 9: Difference in probability of axion production between photon beams reflected off the
moon at its highest and lowest orbital radius as a function of axion mass ma for three different
coupling constant gaγ values.

Since we are looking for the best constraint that is theoretically possible we make the as-
sumption that the detectors are sensitive enough to notice the difference of a single photon.
Equation (43) therefore becomes

∆PNexp > 1. (45)
Figure 9 demonstrates, for the case of the lunar laser, how the difference in axion production

probability ∆P changes with the coupling constant. The sharp drops and steady decline
in probability are due to the angular terms present in equation 27. Therefore, by using a
bisector searching algorithm it is possible to find the smallest coupling constant that fulfils the
requirement for detection defined by equation (45).

First, the magnetic field is calculated along the paths that provide the largest and smallest
probabilities for photon conversion, Bmax and Bmin respectively.

Initially the lower limit for the search gdown is set to zero and the upper limit gup is set to
10−12. Test values for the coupling constant are given by the mean of the upper and lower
limits

gaγ =
1

2
(gup + gdown) (46)

This value is then used to calculate the conversion probability along the paths of highest and
lowest magnetic field strength, P (Bmax) and P (Bmin) respectively by using the conversion
matrix. We then check if this fulfils the requirement for detection defined by equation (45).
If not then we increase the value of gup. This is repeated until the requirement is fulfilled to
ensure that the ’true’ value lies within the lower and upper bounds.

Next, we want to ensure that this value is as close to the true value of gaγ as possible.
This is done by systematically moving gup and gdown until the difference between ∆PN and
the error σ is less than 1% of the error value. Once this condition is met then we have found

21



Student ID: 4207372 & 4227772 David Ellis & Shane Fenn

the value for the coupling constant to within the desired precision. The full process is also
outlined in the flow diagram of figure 10.
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Figure 10: Flow diagram outlining the process used to calculate the smallest coupling constant
required to generate a detectable difference in photons.
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Figure 11: Minimum coupling strength gaγ able to produce a single photon difference in photon
detection between the maximum and minimum lunar orbital radius for approximately five hours
of detection in each configuration as a function of axion mass ma

8 Results

8.1 Lunar Laser

Using the experimental parameters of APOLLO lunar ranging experiment, the bisector
searching algorithm described was used to determine the best theoretical constraints that could
be imposed on the axion-photon coupling constant. This limit is calculated as a function of
axion mass as shown in figure 11.

From figure 11 we see that the theoretical best limit for current lunar laser technology
is gaγ < (7.2 ± 1.9) × 10−5GeV−1 in the low mass regime. The peaks seen starting at
ma ≈ 10−7eV are due to the angular terms in equation 27 as discussed for figure 9. Since the
coherence of the longer path length is lost at a smaller axion mass than the other, there is a
small dip in the constraint.

Since APOLLO measures around 1 photon for every 1016 sent, it can be estimated that
they would have to use a 2× 1011 W laser to generate constraints equal to that of CAST.

8.2 Satellite-Satellite Laser

Again, by finding the coupling constant that fulfils the N∆P > 1 requirement, it is possible
to estimate the maximum constraint possible using the satellite method for both a polar and
an equatorial orbit. This was done for both a single orbit and a month of orbit. For the polar
satellite case the theoretical best limit based on the technology used by the LISA Pathfinder
experiment for scalar ALPs is g′aγ < (4.0± 1.0× 10−12′) after a month of orbit, as shown in
12. The maximum constraint on pseudoscalar ALPs after a month of orbit for the polar case
is shown in figure 13 to be gaγ < (2.0± 0.5× 10−12).
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Figure 12: Minimum coupling strength gaγ able to produce a single photon difference in photon
detection for scalar ALPs after a single orbit and a month of polar orbit as a function of axion
mass ma.
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Figure 13: Minimum coupling strength gaγ able to produce a single photon difference in photon
detection for pseudoscalar ALPs after a single orbit and a month of polar orbit as a function
of axion mass ma.
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Figure 14: Minimum coupling strength gaγ able to produce a single photon difference in
photon detection for pseudoscalar ALPs after a single orbit and a month of equatorial orbit as
a function of axion mass ma.

For the equatorial orbit, figure 14 shows that for pseudoscalar ALPs, the maximum con-
straint on the coupling constant possible after a month of orbit is gaγ < (1.3± 1.0)× 10−11

GeV−1.

9 Discussion
In this investigation we have demonstrates that through the exchange of photons between

a pair of satellites in orbit of the Earth, it should be possible to generate better constraints
on the coupling between photons and ALPs than the current best experiments for masses
ma ≈ 3 × 10−6eV. Figure 13 demonstrates an ability to outperform both CAST and it’s
upcoming successor IAXO it’s ability to constrain the photons coupling to pseudoscalar ALPs.
Additionally, from figure 12 we see that this method could also outperform both ALPS-I and
the upcoming ALPS-II in its ability to constrain the coupling to scalar axion-like particles.
The lunar laser experiment, however, is less successful and falls short of the limits achieved by
CAST by several orders of magnitude.

There are clear advantages to using the satellite experiments when compared to many of
the current axion searching methods. Unlike CAST and IAXO the polar orbit can also search for
scalar ALPs. Additionally, while ADMX requires that ALPs not only exist but form a significant
contribution of dark matter, a requirement that neither of our methods shares. Both of our
methods have more in common with the ’light shining through walls’ experiments, which can
detect both scalar and pseudoscalar ALPs. However, we require only a single axion-photon
conversion rather than two, increasing the effectiveness of the experiment.

The limits calculated for both the Lunar laser and satellite experiments are likely to be
overestimates for the capability of this type of system due to simplifications and assumptions
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we have used. For further study into the viability of these axion detection experiments, there
are many factors that would need to be expanded upon and considered to make the modelling
more accurate. These can be separated in two parts, one for improving the magnetic field
modelling and the other for improving the realism of the lunar laser and satellite experiments.

The dipole approximation of the Earth’s field has been shown to closely resemble experi-
mental measurements. However, since a single value for the magnetic field at the equator B0

is used, the model neglects changes in the field due to variations in the field strength at the
surface arising from the specific composition of the geodynamo [29] and local palaeomagnetism
[34]. This variation would have an important impact on the probability of axion production in
long distance photon beams and therefore should be considered in future investigations.

The precision of our toy model for the magnetic field contributions of the solar wind could
be improved by considering a greater area of space with a larger density of segments. This
however greatly increases the time required to compute the field. The process could be made
more efficient by making use of the systems rotational symmetry about the z-axis. Additionally,
the density of segments could be dynamically chosen such that the density is higher nearer to
the Earth.

The solar wind model used assumes that the solar wind acts as an incompressible fluid.
This requires that the material density is constant which is known not to be true [33]. It also
neglects key magnetospheric features such as the current ring, equatorial current sheet and
field-aligned currents, as well as the tilt of the Earth’s axis relative to the heliocentric radius.
However, the model used should be sufficient to predict the gross contribution of the solar wind,
particularly at the low altitudes considered in this investigation. The additional contributions
mentioned above would only have a notable impact on the direction of the magnetic field in
the area local to the satellites. A better model could be built by solving the three-dimensional
magnetohydrodynamics (MHD) equations [35]. The most convenient and physically accurate
solution would, however, be to use an existing semi-empirical model such as that developed
by Tsyganenko since these models much more accurately portray the magnetic field strength
and direction due to all sources [36].

Efforts were made to ensure both the lunar laser and satellite models were as accurate as
possible, however, there were some simplifications made that would need to be addressed in
future studies on this topic. For the lunar laser experiment we realise that in order to take
model the photon detection over the course of a full night of five hours, we have to consider
the changes to beam divergence caused by the angular component of the beam as it tracks
the moon across the night sky. If we wished to still neglect the complications caused by a
changing angle then we would have to reduce the measurement time and therefore the number
of photons we can detect each night. We also idealised the location of our telescope and
reflector to simplify the calculations. If further studies were to select an existing location then
an angular component would also be included. However, the selection of an existing location at
altitude would bring a positive effect to the results as the atmospheric turbulence has a greater
effect on the beam divergence at lower altitudes, where the atmosphere has a greater density.
We could improve upon the transmission of the laser through the atmosphere further by using
light of a larger wavelength such as infra-red. There would need to be a compromise on this,
however, as larger wavelengths have smaller beam divergences as they propagate through the
atmosphere but have a greater divergence when propagating through a vacuum. We are also
limited as to which wavelengths we may use, however, as the reflectors must be capable of
returning the signal to earth with as little divergence as possible.

An important issue to be addressed is that we have ignored any other sources of photons
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that will add a significant error to both experiments such as solar photons. In the lunar laser
ranging experiments, there is a large amount of background noise caused by photons being is
detected due to external photon sources. This makes it difficult to identify which photons were
echoes of the source laser. For example, during periods of a full moon, this background noise
is large enough to reduce the signal to noise ratio so much that the experiment is rendered
invalid for most telescopes. APOLLO is one of the few that can still operate. Additionally,
the signal strength is reduced by a factor of ten during this time [37]. A further challenge
experienced during the full moon is that many reflectors become distorted by solar heating
which increases the divergence of the returning laser [38]. During the new moon periods, the
lunar laser telescopes face the challenge of the lunar surface not being sufficiently visible to
allow for accurate location of the reflectors. To cope with this, the measurements must be
taken near the moon is illuminated, increasing the signal to noise ratio. The sum of these issues
is that for our lunar laser experiment we would have to reduce the time available to collect data
or expand significantly upon our model. We also made the assumption that a single difference
in the number of photons would be measurable. The high levels of background noise show that
this is unrealistic even if the technology were available. There are ways to reduce the signal to
noise ratio, however, such as using a polarised laser and adding filters to the telescopes that
are tuned to the specific wavelength and polarisation of the laser in use.

For the satellite experiment, greater axion production probabilities could be achieved by
orbiting satellites around a stronger magnetic field source. Jupiter, for example, has a dipole
moment 20,000 times larger than that of Earth with a dipole equatorial field of 0.428mT
[39]. Since the magnetic field at the equator is around 14 times greater than that of Earth
and the probability of axion production scales as the square of the magnetic field (equation
(5)), satellites orbiting Jupiter would be around 144 times more effective at constraining the
axion-photon coupling constant than satellites orbiting Earth. The magnetic field strength
incident on the beams could also be improved by reducing the orbital altitude. Additionally,
the production probabilities could be increased by extending the length of the photon beam.
This would mean either discarding our assumption that every photon emitted will reach the
detector or increasing the detector size. The former option would force us to calculate the
beam divergence and the ratio of emitted to received photons whereas for the latter option
we are only bound by the technology available. Unlike the lunar laser experiment, when
selecting an appropriate wavelength there is no trade-off between one that propagates through
a vacuum more easily and one that is less affected by atmospheric turbulence. Neither are
we limited to wavelengths of light capable of being reflected by the reflectors on the lunar
surface. This grants us more freedom in experimenting with different wavelengths of light to
find the most ideal for axion detection. In order to increase the length of the system, it would
be advantageous to use light of a smaller wavelength to reduce beam divergence and thus
increase the number of detected photons.

Background noise due to solar photons must also be considered for the satellite experiment.
Again this background noise could be greatly restricted through the implementation of filters
and the polarisation of the laser in use. Both experiments would benefit from the additions of
a more powerful laser and a larger photon collection area to increase the number of photons
detected. By using the same method as for the rest of the investigation but implementing a
4m diameter photon collecting area and a 2W laser. We calculate that for the polar orbit case,
after one month of a constraint of gaγ < 2× 10−13GeV −1 could be achieved.
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10 Conclusion
We have investigated two new methods for improving the constraints on the axion-photon

coupling constant by using the geomagnetic field. This field was modelled as a superposition
of the Earth’s dipole field and the field due to the solar wind interacting with the magne-
tosphere. The field due to the solar wind was calculated by modelling the solar wind as an
incomprehensible, charged fluid flowing over a Rankine halfbody. Using a computer simulation
that separates the field into discrete sections of constant field, the probability of photons being
converted into axions could then be calculated.

We considered the possibility of utilising the reflectors on the lunar surface to return an
emitted photon beam back to the source on Earth and measure the number of returning
photons. The eccentricity in the lunar orbital radius changes the probability of a conversion
taking place before the photon returns to Earth. This change in probability allows us to
constrain the coupling constant. Using the experimental parameters of the APOLLO lunar
ranging experiment we were able to estimate the theoretical best limit of gaγ < (7.2± 1.9)×
10−5GeV−1 for pseudoscalar ALPs with masses in the range ma < 10−7eV.

The second method considered sending a photon beam between a pair of satellites 125km
apart, orbiting the Earth in either a polar or equatorial orbit. The change in the magnitude
of the relevant component of the magnetic field results in a periodic change in the probability
of photons converting to ALPs as they travel between the satellites. Using the experimental
parameters of the LISA Pathfinder experiment, for the polar orbit we were able to estimate a
best limit constraint of gaγ < (2.0 ± 0.5) × 10−12 GeV−1 for pseudoscalar ALPs and g′aγ <
(4.0± 1.0)× 10−12 GeV−1 for scalar ALPs. Both with masses in the range ma < 2× 10−6 eV
and both results produced after one month of orbit. We also estimate that such a satellite pair
in an equatorial orbit would be able to produce constraints of gaγ < (1.3± 1.0)× 10−11GeV−1

for pseudoscalar ALPs for the same mass range.
The constraints for the lunar laser case are orders of magnitude worse than those produced

by CAST or those expected be produced by IAXO. Considering the simplifications we made to
this model it is unlikely that this method will be improved in a significant enough manner to
produce competitive constraints in the future. The constraints on pseudoscalar ALPs produced
by the satellite cases outperform CAST and IAXO. The constraints on scalar ALPs produced
by the polar orbit also outperform those of the current best experiment, ALPS. For both scalar
and pseudoscalar ALPs, there is a lot of potential for the development of this experiment to
search for axions and ALPs.
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